SUSCETTIBILITA' AL METALAXYL E AL DIMETOMORF DI ISOLATI DI *PHYTOPHTHORA* INFESTANS IN ITALIA

G. CRISTINZIO, A. TESTA

Dipartimento di Arboricoltura, Botanica e Patologia Vegetale - Università degli studi "Federico II" Via Università, 100 - 80055 Portici, Napoli

Riassunto

E stata esaminata l'azione del metalaxyl e del dimetomorf sulla crescita radiale e sulla germinazione degli sporangi di *Phytophthora infestans* (Mont.) de Bary. Le prove si sono svolte in laboratorio, su substrato agarizzato (V8p) a cui veniva aggiunto il fungicida alle concentrazioni di: 200 - 20 - 2 - 0,2 e 0,0 ppm di principio attivo. Dai risultati ottenuti è emersa la presenza in Italia di numerosi ceppi resistenti al metalaxyl. La quasi totalità degli isolati saggiati, invece, si sono dimostrati sensibili al dimetomorf. La sensibilità a due fungicidi non è apparsa correlata alla compatibilità sessuale e alla provenienza geografica dei ceppi saggiati.

Parole chiave: patata, pomodoro, Phytophthora infestans, metalaxyl, dimetomorf

Summary SENSITIVITY TO METALAXYL AND DIMETHOMORPH OF PHYTOPHTHORA INFESTANS ISOLATES IN ITALY

The effect of metalaxyl and dimethomorph on radial growth and sporangial-germination of *Phytophthora infestans* (Mont.) de Bary was assayed *in vitro*. Tests were carried out on V-8 pea agar amended with fungicides at concentrations of 200, 20, 2, 0.2, or 0.0 ppm. The results indicate the presence in Italy of many metalaxyl-resistant strains. Almost all the isolates tested were sensible to dimethomorph. No correlation was observed between the sensitivity to fungicides and the mating type or geographical origin of the isolates.

Key words: potato, tomato, Phytophthora infestans, metalaxyl, dimethomorph

Introduzione

Il metalaxyl, scoperto nel 1977 da Urech et al., si dimostrò subito molto attivo nella lotta alle malattie causate da Peronosporales ed in modo particolare alla peronospora della patata; ancora oggi a livello mondiale esso ricopre un ruolo molto importante per la lotta a questa fitopatia (Gisi and Cohen, 1996). Ma dopo soli due anni dalla sua commercializzazione, furono segnalati ceppi resistenti di Pseudoperonospora cubensis (Reuveni et al., 1980) e poco dopo iniziarono anche le segnalazioni riguardanti Phytophthora infestans (Mont.) de Bary (Davidse et al., 1981). Recentemente sono stati effettuati studi che provano una sua azione stimolante sul fungo (Zhang et al., 1997). Gli isolati di P. infestans resistenti al metalaxyl (MR) germinano più velocemente de infettano le foglie di patata molto più velocemente degli isolati sensibili al metalaxyl (MS) (Bashan et al., 1989). Gli MS si conservano meglio nei tuberi di patata durante l'inverno rispetto a quelli MR, per cui nel corso della successiva stagione le prime infezioni sono prevalentemente causate dagli MS, mentre gli MR predominano nella stagione inoltrata (Kadish and Cohen, 1992).

Il dimetomorf segnalato nel 1988 da Albert et al. come un nuovo fungicida attivo contro *Peronosporales*, viene definito come un prodotto molto promettente per la lotta alla peronospora della patata e del pomodoro, in quanto efficace sia contro i ceppi MS che MR (Cohen et al., 1995).

In questo lavoro è stata esaminata la risposta ai due fungicidi di ceppi di *P. infestans*, con diversa compatibilità sessuale, provenienti da varie regioni italiane, collezionati nel corso del 1995 e 1996.

Materiali e metodi

Per le prove d'inibizione della crescita miceliare, sono stati utilizzati 150 ceppi di *P. infestans*, di cui 80 isolati da piante di patata e 70 da pomodoro, attualmente conservati nella micoteca del nostro Istituto, riportati nella Tabella 1. Per l'isolamento del fungo dai tessuti vegetali è stato adoperato il substrato V8 + antibiotici e fungicidi, così costituito: (piselli g 75; V8 50ml; CaCO₃ g 0,5; agar g 20; vancomicina mg 100, neomicina mg 10; pimaricina mg 10; benomyl mg 10; nistatina ml 10 a 100 unità/ml; H₂O fino a 1.000 ml). Tutti gli isolati sono stati allevati su V8p (piselli g 75; V8 50 ml; CaCO₃ g 0,5; agar

g 20: H₂O fino a 1.000 ml) e mantenuti a 21°C con illuminazione costante. I substrati avvelenati con fungicidi sono stati preparati partendo dal V8p, a cui, dopo la sterilizzazione, veniva aggiunta ad una temperatura di 55 °C la quantità di prodotto, in sospensione, necessaria per il raggiungimento della concentrazione desiderata: sono stati usati il Ridomil (Ciba-Geigy) per il metalaxyl ed il Forum (Cyanamid) per il dimetomorf. Le concentrazioni finali di principio attivo (p.a.), per i due prodotti, nel substrato agarizzato sono state: 200; 20; 2, 0,2 e 0,0 ppm.

Per la valutazione dell'influenza dei p.a. sulla crescita radiale, sono state inoculate piastre Petri di 85 mm di diametro, con dischetti del fungo di 10 mm di diametro, prelevati dalla periferia di colonie di 12-15 giorni. Le piastre così allestite sono state incubate a 21°C con l'otoperiodo di 12 ore di luce. I rilievi sono stati effettuati misurando due diametri ortogonali delle colonie. Per ogni isolato e concentrazione sono state allestite tre piastre, ripetendo l'intera prova per due volte. La percentuale di crescita è stata

calcolata secondo la formula:

% crescita = $\frac{\text{diam.medio (-10mm) su V8p + fungicida}}{\text{diam. medio (-10mm) su V8p}} (x100)$

Gli isolati sono stati considerati resistenti (R) se la crescita rispetto al testimone è risultata >60%: intermedi (I)=10-60%: e suscettibili (S)<10%, (Shattock, 1988; Deahl et al., 1993).

Su 22 isolati con diversa provenienza, scelti a caso, è stata valutata l'influenza dei p.a. sulla germinazione degli sporangi. Con le stesse concentrazioni e con lo stesso substrato (V8p), per questa prova sono state utilizzate piastre di plastica 10x10 cm di lato, suddivise in 25 scomparti ciascuno di 2 cm di lato. Ogni scomparto veniva inoculato con 40 µl di una sospensione di 2x10⁴ sporangi/ml. Duc replicazioni venivano allestite per isolato e per concentrazione. Il rilievo effettuato al microscopio ottico. dono 24 ore d'incubazione a 23±1°C, consisteva nel contare un minimo di 50 sporangi germinati, in tre campi ottici con obiettivo ad ingrandimento 10x.

Risultati

I risultati, ottenuti con le prove d'inibizione della crescita miceliare, hanno evidenziato l'esistenza in Italia di numerosi ceppi di P. infestans poco sensibili al metalaxyl. Nella Tabella 2 si può osservare che anche con la dose di 200 ppm di p.a., in quattro province sono risultati presenti ceppi nella classe "R", definiti come metalaxyl-resistenti (MR), e in tutte le province esaminate la grande maggioranza degli isolati ricade nella classe "I", o metalaxyl-intermedi (MI). Nella provincia di Sassari entrambi gli isolati sono risultati MR. Complessivamente i dati ottenuți con questo principio attivo sono molto indicativi, anche se in diverse province gli isolati esaminati sono stati pochi. La quasi totalità dei ceppi, infatti, si colloca nelle classi "R" e "I". Mentre, con percentuali basse, e solo in alcune province, compaiono isolati classificabili come "S" o metalaxyl-sensibile (MS).

La classe "I" è stata creata per semplificare l'analisi dei risultati ma all'interno di questa sono stati inclusi molti isolati che hanno avuta una riduzione della crescita inferiore al 50% rispetto al testimone (dati non riportati), quindi poco sensibili al fungicida, e assimilabili come comportamento, più agli MR che agli MS. Risultati poco confortanti riguardo alla sensibilità al metalaxyl si sono avuti anche nelle prove d'inibizione della germinazione degli sporangi (Tabelle 3a e 3b). In queste, anche grazie al conforto dell'analisi statistica, si osserva che le percentuali d'inibizione arrivano ad un massimo del 35% con la concentrazione più alta, e non variano significativamente con il variare della concentrazione del p.a.,

cosa che accade invece con il dimetomorf.

Ottimi risultati invece si sono avuti con questo prodotto, nei confronti del quale, sia per quanto riguarda la crescita miceliare che la germinazione degli sporangi, tuttì gli isolati hanno mostrato una clevata sensibilità. L'uniformità della risposta anche con le concentrazioni più basse, è stata tale che i dati riguardanti le due più alte del p.a. non sono stati riportati nelle tabelle. Va comunque segnalata, limitatamente alla concentrazione più bassa, la presenza in 7 province di ceppi nella classe "I" e, in 6 di queste, tutti gli isolati provenivano da piante di pomodoro.

Riguardo la sensibilità complessiva ad entrambi i p.a. non sono risultate apprezzabili differenze nel comportamento dei ceppi in base alla loro compatibilità sessuale, né alla provenienza geografica, con la

sola eccezione della provincia di Sassari.

Discussione e conclusioni

A partire dagli inizi degli anni '80, quando furono segnalati in Svizzera, per la prima volta al di fuori del Messico (Hohl and Iselin 1984), i ceppi di compatibilità sessuale A2 di P. infestans si sono oggi

Tabella 1 : Compatibilità sessuale e provenienza di 150 isolati di Phytophthora infestans ottenuti da piante di patata e pomodoro.

{		stans often	un da pir	I Pata	·		
		ATA			POMO		
ceppo	Prov.	серро	Prov.	cenpo	Prov	ceppo	Prov.
417 A1	NA 	509 A1	NA "	436 A1	CE	559 A2	FG
418 A1		510 A1		437 A I	"	561 A1	IS "
419 A1	••	511 A1		438 A I	"	562 A1	
420 A1	••	512 A1		449 A I	" "	563 A1	"
421 A1		513 A1		450 A1	" "	564 A I	" "
422 A1		514 A1		451 A1	" u	565 A1	ļ
423 A I	CE	515 A1	, <u>.</u>	453 A1	" "	567 A2	FG
424 A I	AP	516 A1		458 A1		568 A2	и. [
425 A1	CE	517 A1		459 A1	11	569 A2	"
426 A1	. 10	519 A1	18	460 A1	. "	570 A1	11
427 A1	NΑ	520 A1	•-	462 A1	"	571 A2	11
430 A I	CE	521 A1	SS	470 A1	. n	572.A1	. "
433 A1	NA	522 A2	AP	471 A I	"	573 A2	SA
439 A I	AQ	523 seif*	••	472 A I	"	574 A2	11
441 A1	**	531 A1	CZ	473 A I	+1	575 A2	PZ
442 A1	4.	532 A1	4.	474 A I	11	576 A2	n
443 A I	••	533 A I	CS	475 A I	11	577 A2	11
444 A1		534 A1	4.	476 A1	CE	578 A2	11
445 A I	••	535 A1	**	477 A I	ц	580 A2	SA
446 A I		536 A I	**	497 A1	PA	581 A2	11
447 A I		537 A I	CS	498 A I	ц	582 A2	u
448 A I		539 A I	**	524 A1	LT	583 A2	11
452 A1		540 A1	•	526 A I	IS	584 A2	PZ
457 A1	**	541 A1		527 A1	CE	592 A1	IS
465 A1		542 A1	CZ	528 A2	CS	593 A I	FG
466 A1	••	543 A1	CS	529 A2	н	594 A I	11
467 A1	**	544 A1		530 A2	11	596 A2	SA
469 A1	••	560 A1	CE	545 A2	11	597 A2	11
478 A1	••	585 A2	SA	546 A2	11	598 A I	PZ
488 A I	**	586 A2		547 A2	n	599 A I	CE
489 A I	**	587 A2	••	548 sclf	SA		
495 A1	CE	588 A2	••	550 A1	IS		
499 A I		589 A2	••	551 A I	lf		
500 A I	SS	590 A I	CE	552 A1	"		
501 A1		600 A2	SA	553 A1	IS		
502 A I	NA	601 A2	••	554 self	FG	1	
503 A1		602 A2		555 A2	17		i
504 A1	••	603 A1	CE	556 A1	15		
505 A1	••	604 A I		557 A I	#1		
508 A1	••	605 A1	4.	558 A I	n		:

^{*} self = ceppo omotallico

Tabella 2. Ripartizione di isolati di P. infestuns raccolti in 12 province italiane da piante di patata e pontodoro naturalmente insette, in tre classi di resistenza in base alla riduzione della crescita miceliare dovuta a differenti concentrazioni di metalaxyl e di dimetomorf.

Origine	ne					R	Metalaxyl	Į.					Г		D.E.	Dimetomorf	orf.		
degli isolati	lati	2	200 ppm	1111	2	20 ppm		2	2 ppm		0,	0,2 րրու		2	2 ppm		0,	0,2 րրա	u
Provincia	Ospite	#=	-	တ	~	_	υs	~	-	S	~	_	S	×	_	S	R	-	S
Ascoli Piceno	patata	0	100	0	0	001	0	001	0	0	001	0	0	0	0	001	0	33	67
Catanzaro	patata	0	100	0	200	0	0	29	33	0	2	E	0	0	0	100	0	0	100
Caserta	patata	~	53	27	27	64	ç	27	55	8	55	36	٥	0	0	80	0	0	100
Caserta	pomodoro	0	90	10	0	95	S	0	95	5	0	001	0	0	0	100	0		67
Cosenza	patata	0	90	0	30	70	0	100	0	0	100	0	0	0	0	100	0	0	100
Cosenza	pomodoro	0	83	17	0	001	0	0	100	0	0	100	0	0	0	100	0	ננ	19
Foggia	pomodoro	0	73	27	0	100	0	27	73	0	27	73	0	0	0	100	0	5	67
Isernia	patata	0	100	0	50	20	0	50	50	0	20	20	0	0	0	001	0	0	100
Isernia	pomodoro	^	79	14	7	98	7	7	93	0	29	7.1	0	0	0	100	0	7	6
L'Aquila	patata	0	94	9	33	29	0	72	28	0	78	22	0	0	0	100	0	9	ć
Napoli	patata	0	Sű	4	33	11	0	11	23	0	98	4	0	0	0	001	0	0	100
Palermo	pomodoro	0	100	0	.50	50	0	001	0	0	100	0	0	0	0	001	0	0	100
Potenza	pomodoro	0	67	Ę	0	100	0	17	83	0	50	50	0	0	0	001	0	27	73
Sulemo	patata	0	88	<u>- 1</u>	0	88	12	0	88	<u>C1</u>	50	50	0	0	0	100	0	0	001
Salemo	pomodoro	0	7.8	C1	0	001	0	22	78	0	22	78	0	0	O	001	0	22	78
Sassari	patata	100	0	0	100	0	0	100	0	0	001	0	0	0	0	100	0	0	8
- C - C - C - C - C - C - C - C - C - C	1 - incomment		10		olidinean														

* R = resistente, 1 = intermedia e S = suscettibile

Tah. 5a: Inibizione percentuale della germinazione degli sporangi di 22 isolati di *P. infestans* causata da diverse concentrazioni (ppm) di metalaxyl e dimetomori.

		Metalas	(yl		Dimetor	morf
ceppo	200	20	2	0,2	2	0,2
439	33	28	15	38	100	64
443	4	0	16	0	100	24
444	8	4	0	0	100	36
460	11	4	19	2	100	26
489	20	0	16	0	100	72
495	45	41	36	36	100	55
500	63	47	25	50	100	72
517	88	61	71	78	100	93
519	70	78	49	43	100	70 ·
520	0	0	0	0	100	90
521	44	20	0	24	100	92
523	44	- 20	0	20	100	40
540	0	25	0	0	100	39
543	13	б	9	19	100	34
544	0	8	0	16	100	20
551	13	25	8	15	100	75
565	43	23	53	19	100	23
580	20	23	11	20	100	43
586	63	37	30	20	100	40
593	41	15	17	22	100	95
596	61	3	9	. 0	100	36
604	84	32	20	36	100	96

Tab. 3b: Inibizione percentuale media della germinazione degli sporangi di 22 isolati di *P. infestans* dopo 24 ore su diverse concentrazioni di metalaxyl e dimetomorf.

րրու	Metalaxyl	Dimetomorf
200	. 35 a*	100 a
20	23 a	100 a
2	18 a	100 a
0,2	21 a	56 b

^{*} a lettere uguali in una stessa colonna corrispondono medie che non si differenziano statisticamente per P = 0,05 (test di Kruskal e Wallis)

diffusi in molte nazioni di quasi tutti i continenti. Italia compresa (Cristinzio e Testa, 1997). Con una ricombinazione genetica molto frequente, permessa dalla ricombinazione sessuale, si ha una continua produzione di nuovi genotipi e potrebbe essere favorita l'insorgenza di nuovi ceppi MS (Gisi e Cohen, 1996); è da tener presente, inoltre, che in questi ultimi anni, a livello mondiale, nuove populazioni di P. infextans stanno sostituendo le precedenti (Spielman et al., 1991; Fry et al., 1993; Sujkowski et al., 1996). L'utilizzazione del metalaxyl, magari in combinazione con ditiocarbammati (Bradshaw and Vaughan, 1996), potrebbe quindi ritornare utile in futuro se e quando si avrà la comparsa di nuove popolazioni di ceppi MS. Ma allo stato attuale in Italia, in base ai nostri risultati, l'utilizzazione di tale prodotto da solo, per la lotta al patogeno in esame, appare non consigliabile. Il dimetomorf, invece, ha dimostrato di essere un buon prodotto per la lotta alla peronospora della patata e del pomodoro, anche se i risultati di minor efficacia manifestati sugli isolati provenienti da quest'ultima pianta con la dose più bassa, sono meritevoli di ulteriori ricerche.

Lavori citati

ALBERT G., CURTZE J., DRANDAREVSKI A.C. 1988. Dimethomorph (CME 151), a novel curative fungicide. Brighton Crop Protection Conference Pests Diseases., 1988; 17-23.

BASHAN B., KADISH D., LEVY Y., COHEN Y. 1989, Infectivity to potato, sporangial germination, and respiration of isolates of Phytophthora intextans from metalaxyl-sensitive and metalaxyl-resistant populations. Phytopathology, 79, 832-836.

BRADSHAW N.J., VAUGHAN T.B. 1996. The effect of Phenylamide fungicides on the control of potato late-blight (Phytophthora infestans) in England and Wales from 1978 to 1992. Plant Pathology, 45, 249-

CRISTINZIO G., TESTA A. 1997. Occurrence of the A2 mating type and self isolates of Phytophthora infestans in Italy, Journal of Plant Pathology, 79, 121-123.

COHEN Y, BAIDER A., COHEN B.H. 1995. Dimethomorph activity against convecte fungal plant pathogens. Phytopathology, 85, 1500-1506.

DAVIDSE L.C., LOOIJEN D., TURKENSTEEN L.J., VAN DER WAL D. 1981. Occurrence of Metalaxy-1resistant strains of Phytophthora infestans in Dutch potato fields. Netherlands Journal of Plant Pathology, 87, 65-68,

DEAHL K.L., INGLAS D.A., DeMUTH S.P. 1993. Testing for resistance to metalaxyl in Phytophthora infestans isolates from northwestern Washington. American Potato Journal, 70, 779-795.

FRY W.E., GOODWIN S.B., DYER A.T., MĀTUSZAK J.M., DRENTH A., TOOLEY P.W., SUJKOWSKI L.S., KOH Y.J., COHEN B.A., SPIELMAN L.J., DEAHL K.L., INGLIS D.A., SANDLAN K.P.

1993. Historical and recent migration of *Phytophthora infestans*, chronology, pathways and implications. Plant Disease, 77, 653-661.

GISI U., COHEN Y. 1996. Resistance to phenylamide fungicides: A case study with Phytophthora infestans involving mating type and race structure. Annual Review of Phytopathology, 34, 549-572.

HOHL H.R., ISELIN K. 1984. Strains of Phytophthora infestans from Switzerland with A2 mating type behaviour. Transactions British Mycological Society, 83, 529-531.

KADISH D., COHEN Y. 1992. Overseasoning of metalaxyl-sensitive and metalaxyl-resistant isolates of Phytophthora infestans in potato tubers. Phytopathology, 82, 887-889.
REUVENI M., EYAL H., COHEN Y. 1980. Development of resistance to metalaxyl in

Pseudoperonospora cubense. Plant Disease, 64, 1108-1109.

SHATTOCK R.C. 1988 - Studies on the inheritance of resistance to metalaxyl in *Phytophthora infestans*. Plant Pathology, 37, 4-11.

SPIELMAN L.J., DRENTH A., DAVIDSE L.C., SUJKOWSKI L.J., GU W., TOOLEY P.W., FRY W.E. 1991. A second world-wide migration and population displacement of Phytophthora infestans? Plant Pathology, 40, 422-430.

SUJKOWSKI L.S., GOODWIN S.B., FRY W.E. 1996. Changes in specific virulence in Polish populations of Phytophthora infestans: 1985-1991. European Journal of Plant Pathology, 102, 555-561.

URECH P.A., SCHWINN F., STAUB T. 1977, CGA48988, a novel fungicide for the control of late blight, downy mildews and related soil borne diseases. Proc. Br. Crop. Prot. Conf., 2, 623-631.

ZHANG S., PANACCIONE D.G., GALLEGLY M.E. 1997. Metalaxyl stimulation of growth of isolates of Phytophthora infestans. Mycologia, 89, 289-292.